
Expressive feature characterization for ultrascale

data visualization

W Kendall,1 M Glatter,1 J Huang,1 T Peterka,2 R Latham,2 and R B

Ross2

1Department of Electrical Engineering and Computer Science, The University of Tennessee at
Knoxville, Knoxville, TN 37996, USA
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439, USA

E-mail: kendall@eecs.utk.edu

Abstract. The grand challenge for visualization is to cast information into insightful content
so scientists can test hypotheses and find phenomena not possible otherwise. This challenge
is faced with a critical gap in the scientists’ abilities to succinctly characterize phenomena
of interest in their datasets. Furthermore, as applications generate larger and more complex
datasets, efficiently retrieving the features of interest becomes a significant problem. In this
paper we discuss recent achievements and new capabilities in the characterization and extraction
of qualitative features. We also outline the necessary components needed by a backend system
to use this new capability and operate in the same environment as the scientific applications.
Our methods have allowed us to scale to high process counts on leadership computing resources
and have also allowed us to keep pace with the growing size of scientific datasets. We discuss
our efforts of examining qualitative events in cutting-edge climate data.

1. Introduction

Visualization is the primary tool for scientists among a wide array of domains to gain insight into
complex phenomena, whether it is the core collapse of a supernova or major ocean eddies and
currents. One of the primary components that is tied in directly with the visualization process
is the ability describe these types of features in a way that is understandable to the human and
the computer. Furthermore, the retrieval of the features plays a crucial role in the interactivity
of visual analysis. With dataset sizes increasing to hundreds of terabytes and beyond, feature
retrieval becomes a first-class problem along with characterization.

Our recent research on feature specification methods has led to new capabilities to concisely
define and visualize qualitative user interests, for example, the beginning of spring or the
extinction regions through time in fuel combustion. In one novel approach, we used a regular
expression language for finding temporal trends in datasets [3]. In another, we used statistical
distributions of variables in neighborhoods for visualizing local characteristics of volumetric
datasets [5]. These methods, along with many other works, have one main and simple generic
requirement – the issuing of Boolean range queries. This simple requirement allows for the
building of powerful systems on top of the methods.

Besides new functionalities for expressive feature characterization, we also focused on
scalability in anticipation of extreme-scale challenges. Our prototype system, outlined in



Figure 1: An overview of our end-to-end system. Data stored from a simulation is first read
using advanced I/O techniques. The necessary data structures are then built for load-balanced
querying to take place. After this, the user can issue queries using a higher-level language and
aggregate the results. A reduction can be applied to the results before analysis and visualization.

Figure 1, successfully extracted climatic events from over a terabyte of observational satellite
data in less than one minute using 16 K processes; this time included parallel I/O, parallel on-
the-fly processing, and parallel visualization [6]. Harnessing this type of computing power offers
a virtually unlimited ability to search for and extract features of interest. Scalability such as
this is also needed for visualization to keep pace with peta- and future exascale supercomputers.
In the following, we provide a holistic overview of the various components that are required by
such a system, details of our methods for expressive feature characterization, and sample results
from our techniques when applied to terascale observational climate data.

2. System Components

To be successful on the user and application level, the design of our end-to-end system is driven
with usability and scalability in mind. We also keep the issuing of range queries as a black box
for encapsulation by other higher-level tools. Figure 1 overviews the system in terms of three
major components: parallel I/O, distributed data structures, and analysis.

Parallel I/O The I/O component is the most challenging part of the system. The scalability of
I/O systems is hampered by many factors, and even seemingly advanced I/O techniques might
not be effective for certain problems. For usability, the system requires handling data formats
familiar to the scientist, which makes the problem even more difficult.

Working with data directly from simulations, i.e. “native application” form, requires
performing I/O on higher-level file formats like netCDF and HDF stored across multiple time-
varying files. Our system elegantly handles data in this format by first assigning files to processes
in a way to maximize contiguous I/O requests and then using the Block I/O Layer (BIL) to read
data across multiple files and variables. Significant I/O bandwidth increases can be obtained
when using multicollective I/O techniques [7] for reading multiple files and variables at once,
especially when smaller files would not individually warrant the use of high parallelism.

This method allowed us to achieve up to 28 GB/s bandwidth performance on the Cray XT4
Jaguar machine at Oak Ridge National Laboratory, which is 75% of reported IOR benchmark
performance tests [2]. Performance such as this in an application setting is critical in reducing
the latency between the end of simulations and analysis and visualization.

Distributed Data Structures In our studies [4], we have found that using a structure similar to
a B-tree for query processing adheres closest to our system design goals. The ability to search
arbitrary amounts of data with unlimited cardinality provides the required usability, and the
potential to easily partition the tree in an embarrassingly parallel fashion supplies the needed
scalability. The storage overhead of our tree structure is also minimal and usually less than one
percent of the dataset size.

Beneath the tree, the data is stored at the granularity of individual items that contain the
following queryable elements: scalar or vector values of the voxel they represent, spatiotemporal
quantities, and other on-the-fly derived properties. The items are distributed to each process in



such a way to enhance load-balanced query results; we found that randomly distributing items
achieved a low distribution overhead while giving ideal load balance. This method has allowed
us to achieve significant performance increases at every scale up to 16 K processes [6]. With
such scalability, the querying component of our system is effectively unbounded and allows for
more sophisticated analysis and querying languages to be built on top of it.

Analysis The analysis component of the system is built on top of a familiar parallel
programming paradigm known as MapReduce [1]. In MapReduce, the user maps a value to
a key and then the keys are sorted so that a reduction can be applied to the values from each
key in parallel. This programming concept is applicable to a wide variety of problems in data
mining and document indexing, and it can also be applied to many types of scientific analyses.

When querying has been completed in our system, the relevant items can then be sorted
by a key, whether it is the spatial or temporal dimensions or variable values from the query.
This allows for more sophisticated types of analyses such as temporal differencing or clustering
to be applied. The usability of the system is further extended to more powerful querying
languages that can take advantage of ordering of results; one such example from climate science
that requires this feature, drought detection, and other examples are outlined in the following
section.

3. Feature Characterization and Visualization

Our feature characterization is driven by the fact that the scientists’ definition of the features
they expect to find may be precise or vague. In both of these scenarios, the complexity of the
dataset plays a major role in feature exploration. When simulations produce datasets that have
many variables, timesteps, and even many models, the use of a higher-level ability to quickly
and comprehensively explore data is necessary. Specifically, the ability to provide “wildcards”
allows for exploring a greater degree of uncertainty about the dataset.

Regular Expression Framework A language with the qualities of regular expressions fits in this
framework and provides the ability to succinctly characterize features. The language is modeled
after the work of [3]. This research showed the effectiveness of using a language to discover
temporal events. For example, the query ???[SNOW ≤ 0.7]*T[SNOW > 0.7]?* detects the
first large snowfall. The first three question marks indicate that it does not matter what values
of snow are present during January, February, and March. [Snow ≤ 0.7]* represents a low
snowfall for zero or more months after March, and T[Snow > 0.7] returns the first month T
in which the snowfall reached the 0.7 threshold. The months after this do not matter and are
represented with the question mark followed by the asterisk. T values and items that matched
the query are returned to visualize the event of first snowfall.

We are currently extending this language and developing components that will allow discovery
of more sophisticated features. One such example, ?*[VEG < 0.5 & WATER < 0.3]ˆ4?*, is a
query for drought. The caret followed by the four indicates that low water and vegetation must
occur for at least four timesteps in a row to be considered a drought. We are also exploring
another extension to the language that will permit querying of neighborhood and cluster-based
features. Describing features in this way showed a wide variety of uses in [5] and it would be
useful to interactively perform these queries on large datasets.

Case Study - MODIS We applied our backend system to over a terabyte of observational
Moderate Resolution Imaging Spectroradiometer (MODIS) data. The dataset contains
vegetation and water indices over a 500-meter resolution sampling of North and South America
(31,200 x 21,600 grid) spanning 417 timesteps over 9 years; each timestep is stored in a separate



Figure 2: Overview of the length of snow season. This visualization was created by querying the
time lag between the first occurrences of abnormally high water content (an indicator for snow)
and vegetation green up. Some notable areas are marked such as the ski resorts in Colorado,
which have long snow seasons. Other areas like the Amazon Rainforest are returned because of
the naturally high amount of water content, our original indicator for snow.

file. We used the Jaguar XT4 machine at Oak Ridge National Laboratory which consists of
7,832 quad-core 2.1 GHz AMD Opteron processors and a Lustre parallel file system.

To obtain a better understanding of the length of a snow season in MODIS, we issued the
query represented by ?*T[0.7 ≤ WATER ≤ 0.9]?*T[0.4 ≤ VEG ≤ 0.6]?*. The returned
T variables are the first occurrences of high water content (a likely indicator of snow) and
vegetation green up; the difference of these provides an approximated length of the snow season.
A visualization from the year 2006 is shown in Figure 2. Some obvious structures can be seen,
such as an abnormally long snow season in the ski resorts of Colorado and the Northern Rocky
Mountains in Canada. We can also observe distinct contours in snow season length when entering
the Boreal Forest in Canada. Some anomalies like the Amazon Rainforest are returned because
of the abnormally high water content in the area, our original definition for snow.

Application timing is shown in Figure 3. The reading time includes the entire time it took
to query the netCDF data for variable information, assign I/O to processes, and then read the
data in memory. The processing time includes filtering out useless content (e.g. ocean values),
redistributing the data for load-balanced querying, and locally sorting the data. Querying,
reducing, and writing the images are shown as an aggregate timing result, and the total
application time is also shown.

The application executed in slightly over one minute at the largest scale, a seemingly
insignificant amount of time in comparison to the amount of data being processed. I/O
was the dominant component of the application, taking 46 seconds at 16 K processes.
We reached our peak reading rates at 2 K processes, and I/O performance degraded
slightly when scaling higher; this phenomena has also been observed in other scenarios
when using high process counts for I/O on Jaguar [2]. The other components of the
system scaled well at high process counts. Processing the entire dataset took as little as
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Figure 3: Timing results for the MODIS application.
The results include component times for reading and
processing data, along with an aggregate timing for
querying, reducing, and writing results. The total
application time is shown as a sum of these components.

8 seconds. All 18 queries (2
hemispheres for each of the 9 years)
were completed in 0.51 seconds and
returned 11 billion relevant items.
At 16 K processes, all items were
reduced in 4.8 seconds for temporal
analysis and it took 2 seconds overall
to write the 9 images for each year.

4. Summary

The ability to describe complex
events using a mini programming
language is powerful. High-level lan-
guages enable intuition-led discov-
ery of conceptual features that may
involve a multitude of uncertain-
ties. Supported by a scalable back-
end, our approach provides a power-
ful means of application science re-
search, and also a promise of contin-
ued scalability at extreme scales.

We learned crucial lessons in the designing of an ultrascale visualization system that closely
integrates sophisticated I/O together with full-range processing and analysis of data in native
application formats. We have embedded our know-how into two open source packages: SQI –
our backend querying system, and BIL – our multi-file parallel I/O library for visualization and
analysis. Downloads are freely available at http://seelab.eecs.utk.edu.
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